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Problem definition 

•  Given a general purpose text corpus and a given 
speech to transcribe 
•  Build a LM which is focused on the particular 

(unknown) topic of the speech  
•  No need for instantaneous, but should be quick 

•  Approach: 
•  Perform a first ASR pass 
•  Use recognition output to select text data “similar” to 

the context 
•  Build a focused language model 
•  Use the focused language model in the next ASR pass 
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terminology 

•  text corpus 
•  composed by N rows (N 

documents) 
•  average length of a document: Lc 

•  dictionary  
•  composed by td terms, 1≤d≤D 

•  auxiliary corpus 
•  composed by rows of the text 

corpus, size: K words 
•  speech to recognize 

•  TED talks, average length: Lt 
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Auxiliary data selection 

•  rationale: 
•  score each row in the text corpus against ASR output 
•  sort rows according to score 
•  select the first rows  auxiliary corpus (having size K) 

•  3 approaches implemented and compared: 
•  TFxIDF 
•  Proposed method 
•  Perplexity based method 

•  domain specific data (TED LM) 
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Auxiliary data selection:  
TFxIDF 
 

•  for each talk i and for each word td compute: 
 
 

  tfd
i = frequency of term td inside talk 

  dfd = # of documents in the corpus containing td 

•  compute the same for each row Rn in the corpus, 
1≤n≤N 

•  estimate a similarity score: 
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Auxiliary data selection:  
Proposed method 
 

•  sort words in dictionary according to frequency 
•  discard most frequent words (< D1 = 100) 

•  they don’t carry semantic information 

•  discard most rare words (> D2 = 200K) 
•  too rare to help, include typos 

•  replace words in corpus by their index in dictionary 
•  sort indices in each row to allow quick comparison 
•  estimate a similarity score: 
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Auxiliary data selection:  
Proposed method 
 

•  example: 
•    I  would like your advice about rule one hundred 
    forty three concerning inadmissibility 
 

•   108   264   2837   1019   4890        166476 
       (like    your    advice      rule  concerning   inadmissibility) 

 
 

•   47    54    108  264   2837      63    1019   6       12 
     65      24        4890              166476 

 
 

•  108    264    1019    2837   4890    166476 
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Auxiliary data selection:  
Proposed method 
 

•  similarity score computation: 
•  the lower index increment 
 

155    264    2222    2345   2837   166476 
 

 
 

108    264    1019    2837   4890    166476 
 
 
 
 

      score = 3 / 12 
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Auxiliary data selection:  
Perplexity based method 
 

 
 

•  train a 3-gram LM using ASR output 

•  estimate perplexity for each row in the corpus 

•  use perplexity as a similarity score 
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Auxiliary data selection:  
Run time computational complexity 
 

 
 

•  corpus size: N (5.7M) rows, average row length L (272) 
•  dictionary size: D (1.6M) (D2=200K) 

TFxIDF	
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Training data 

•  text corpus 
•  google news 
•  5.7 M documents, 1.6 G words 
•  272 words per document 
•  LM for rescoring: 

•  4-gram backoff LM, modified shift  
•  1.6M unigrams, 73M bigrams, 120M 3-grams and 195M 4-

grams. 
•  FSN for  first & second step: 

•  200K words, 37M bigrams, 34M 3-grams, 38M 4-grams. 

•  auxiliary corpus 
•  most similar documents, K words  
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Test data 

•  TED talks (test sets of IWSLT 2011) 
•  auxiliary corpus and auxiliary LM computed for 

each talk 

•  performance are reported as a function of K, the 
number of words used to train the auxiliary LMs 

dev-­‐set	
  
(19	
  talks)	
  

test-set 
(8 talks)	
  

#words	
   44505	
   12431	
  

(min,max,mean)	
  	
   (591,4509,2342)	
  	
   (484,2855,1553)	
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Results 

•  Perplexity as a function of K 
•  0 means no interpolation 

 

  
                         K is expressed in Kwords 
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•  Perplexity interpolating the baseline LM with a domain 
specific LM (trained on ted2011 text, 2 Mwords): 
     dev set: 158                         test set: 142 
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Results 
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•  WER as a function of K 
•  0 means no interpolation 

                          K is expressed in Kwords 
 •  WER interpolating the baseline LM with a domain specific 

LM (trained on ted2011 text, 2 Mwords): 
     dev set: 18.7                         test set: 18.4 
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Conclusion 

•  Method for focusing LMs without using in-domain data 
•  Comparison between the proposed method and 

TFxIDF 
•  similar performance 
•  less demanding computational requirements 

•  Comparable results if using in-domain data 
•  in this setting… 

•  Future work: 
•  how to add new words (to reduce OOV?) 
•  instantaneous LM focusing 
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Thank you for the attention 
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LM interpolation 

•  LM probability associated to every arc of the word 
graph: 

•  J = number of LMs to combine 
•  λj = weights estimated to minimize the overall 

perplexity on a development set	
  	
  
The interpolation weights, i base and i aux, associated to the two LMs 
(LMbase and Lmi aux) are estimated so as to minimize the overall LM 
perplexity on the 1-best output (the same used to build the ith query 
document), of the second ASR decoding step. 
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