

Focusing Language Models For Automatic Speech Recognition

Daniele Falavigna, Roberto Gretter FBK, Italy

The work leading to these results has received funding from the European Union under grant agreement n° 287658

Outline

- Problem definition
- Auxiliary data selection
 - TFxIDF
 - Proposed method
 - Perplexity based method
- Computational issues
 - TFxIDF vs proposed method
- Experiments
- Discussion

Problem definition

- Given a general purpose text corpus and a given speech to transcribe
 - Build a LM which is focused on the particular (unknown) topic of the speech
 - No need for instantaneous, but should be quick
- Approach:
 - Perform a first ASR pass
 - Use recognition output to select text data "similar" to the context
 - Build a focused language model
 - Use the focused language model in the next ASR pass

terminology

 t_1

t₂

t₃

t₄

... t_D

text corpus

- composed by N rows (N documents)
- average length of a document: Lc

dictionary

- composed by t_d terms, 1≤d≤D
- auxiliary corpus
 - composed by rows of the text corpus, size: K words
- speech to recognize
 - TED talks, average length: Lt

auxiliary

corpus

Auxiliary data selection

- rationale:
 - score each row in the text corpus against ASR output
 - sort rows according to score
 - select the first rows → auxiliary corpus (having size K)
- 3 approaches implemented and compared:
 - **TFxIDF**
 - Proposed method
 - Perplexity based method

domain specific data (TED LM)

Auxiliary data selection: TFxIDF

for each talk *i* and for each word *t_d* compute:

$$e^{i}[t_{d}] = (1 + \log(tf_{d}^{i})) \log(\frac{D}{df_{d}}) \quad 1 \le d \le D$$

 tf_d^i = frequency of term t_d^i inside talk

df_d = # of documents in the corpus containing t_d

- compute the same for each row Rⁿ in the corpus, 1≤n≤N
- estimate a similarity score: $s(C^{i}, R^{n}) = \frac{C^{i} \cdot R^{n}}{|C^{i}||R^{n}|}$

Auxiliary data selection: Proposed method

- sort words in dictionary according to frequency
- discard most frequent words (< D₁ = 100)
 - they don't carry semantic information
- discard most rare words (> D₂ = 200K)
 - too rare to help, include typos
- replace words in corpus by their index in dictionary
- sort indices in each row to allow quick comparison
- estimate a similarity score:

$$s'(C'^{i}, R'^{n}) = \frac{\operatorname{common}(C'^{i}, R'^{n})}{\dim(C'^{i}) + \dim(R'^{n})}$$

Auxiliary data selection: Proposed method

• example:

- I would like your advice about rule one hundred forty three concerning inadmissibility
- 47 54 108 264 2837 63 1019 6 12
 65 24 4890 166476
- 108 264 2837 1019 4890 166476 (like your advice rule concerning inadmissibility)
- 108 264 1019 2837 4890 166476

Auxiliary data selection: Proposed method

similarity score computation:

• the lower index increment

Auxiliary data selection: Perplexity based method

- train a 3-gram LM using ASR output
- estimate perplexity for each row in the corpus
- use perplexity as a similarity score

Auxiliary data selection:

dictionary size: D (1.6M) (D₂=200K)

	TFxIDF	Proposed method
Arithmetic operations	O(2 x N x L)	O(N x L / 2)
Memory requirements	O(D + N x L)	

EU**+BRIDGE**

Training data

- text corpus
 - google news
 - 5.7 M documents, 1.6 G words
 - 272 words per document
 - LM for rescoring:
 - 4-gram backoff LM, modified shift
 - 1.6M unigrams, 73M bigrams, 120M 3-grams and 195M 4grams.
 - FSN for first & second step:
 - 200K words, 37M bigrams, 34M 3-grams, 38M 4-grams.

Test data

- TED talks (test sets of IWSLT 2011)
- auxiliary corpus and auxiliary LM computed for each talk

	dev-set (19 talks)	test-set (8 talks)
#words	44505	12431
(min,max,mean)	(591,4509,2342)	(484,2855,1553)

 performance are reported as a function of K, the number of words used to train the auxiliary LMs

test set

------PP

-NFW

TFIDF

Results

• Perplexity as a function of K

• 0 means no interpolation

K is expressed in Kwords

 Perplexity interpolating the baseline LM with a domain specific LM (trained on ted2011 text, 2 Mwords):

dev set: 158test set: 142

Results

• WER as a function of K

0 means no interpolation

K is expressed in Kwords

• WER interpolating the baseline LM with a domain specific LM (trained on ted2011 text, 2 Mwords):

dev set: 18.7 test set: 18.4

Conclusion

- Method for focusing LMs without using in-domain data
- Comparison between the proposed method and TFxIDF
 - similar performance
 - less demanding computational requirements
- Comparable results if using in-domain data
 - in this setting...
- Future work:
 - how to add new words (to reduce OOV?)
 - instantaneous LM focusing

Thank you for the attention

www.eu-bridge.eu

LM interpolation

• LM probability associated to every arc of the word graph:

$$P[w \mid h] = \sum_{j=1}^{J} \lambda_j P_j[w \mid h]$$

- J = number of LMs to combine
- λ_j = weights estimated to minimize the overall perplexity on a development set

The interpolation weights, i base and i aux, associated to the two LMs (LMbase and Lmi aux) are estimated so as to minimize the overall LM perplexity on the 1-best output (the same used to build the ith query document), of the second ASR decoding step.