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Abstract 

The paper presents the system developed by RACAI for the 

ISWLT 2012 competition, TED task, MT track, Romanian to 

English translation. We describe the starting baseline phrase-

based SMT system, the experiments conducted to adapt the 

language and translation models and our post-translation 

cascading system designed to improve the translation without 

external resources. We further present our attempts at creating 

a better controlled decoder than the open-source Moses system 

offers.   

1. Introduction 

This article presents the system developed by RACAI (the 

Research Institute for Artificial Intelligence of the Romanian 

Academy) for the ISWLT 2012 competition. We targeted the 

Machine Translation track of the TED task, Romanian to 

English translation. 

 

We had access to the following resources:  

• In-domain parallel corpus: 142K sentences; 13MB size; 

TED RO-EN sentences [6]. 

• Out-of-domain parallel corpus: 550K sentences; 85MB 

size; Europarl (juridical domain) and SETimes (news 

domain) RO-EN sentences. 

• Out-of-domain monolingual corpus (English): 168M 

sentences; 26GB size; mostly news domain EN sentences. 

• Development set: 1.2K RO-EN sentences (TED tst2010 

file) 

• Test set: 3K RO only sentences (TED tst2011 and tst2012 

files).  

 

Before attempting any translation experiments, the available 

resources had to be preprocessed. This involves first 

correcting the Romanian side of the parallel corpora as to 

obtain the highest possible quality Romanian-side text and 

then annotate both the Romanian and English sides.  

 

Thus, the first preprocessing step involves automatic text 

normalization. Historically, due mainly to technical reasons 

regarding the code-page available in earlier versions of the 

Windows operating system, the letters ș and ț in the 

Romanian language were initially written as ş, ţ (with a 

cedilla underneath – old, incorrect style) and later as ș, ț (with 

a comma underneath – correct style). As such, we have 

several resources with incompatible diacritics for these two 

letters. All old-style letters have been converted to the new 

style. The second correction to be made is due to the 

Romanian orthographic reform from 1993 which re-establish 

the orthography used until 1953, according to which (among 

the others) the inner letter “î”, has been replaced by “â (ex: 

pîine is written correctly as pâine). Older texts have been 

corrected to the current orthography using an internally 

developed tool that uses a 1.5 million word lexicon of the 

Romanian language backing-off a rule-based word corrector 

in case the lexicon might not contain some words. 

 

The third and final necessary correction concerned texts that 

do not have diacritics. In the provided resources, both in-

domain and out-of-domain corpora contain several groups of 

sentences that have not diacritics. Restoring diacritics is a 

rather difficult task, as a misplaced or missing diacritic can 

have dramatic effects starting from change of definiteness of a 

noun (for example) to changing an entire part-of-speech of a 

word, yielding sentences that lose their meaning. Using an 

internally developed tool [19] we were able to carefully 

restore diacritics where they were missing. Even though the 

tool is not 100% accurate, it is better to introduce a small 

amount of error rather than have several words without 

diacritics that will create more uncertainty in the translation 

process later on.  

 

The second step of the preprocessing phase is the automatic 

annotation of both Romanian and English texts.  Using also 

an internally developed tool named TTL [11] we are able to 

tokenize sentences and annotate each word with its lemma, 

two types of part-of-speech tags: morpho-syntactic descriptors 

(MSDs) and a reduced tag set (CTAGs), and different 

combinations of them. The tags themselves follow the 

Multext-East lexical standard [8] and the tiered tagging 

design methodology [20].   

 

As an example, for the English sentence “We can can a can.” 

we obtain the following annotation: 

We|we^Pp|we^PPER1|Pp1-pn|PPER1 

can|can^Vo|can^VMOD|Voip|VMOD 

can|can^Vm|can^VINF|Vmn|VINF 

a|a^Ti|a^TS|Ti-s|TS 

can|can^Nc|can^NN|Ncns|NN 

.|. ^PE|.^PERIOD|PERIOD|PERIOD 

 

The first of the five factors for each word is the word itself 

(the surface form). The second factor is the lemma of the 

word, linked by the “^” character, to its first two positions in 

the MSD tag (grammar category and type). The third factor is 

the lemma linked to the CTAG, followed by the MSD (fourth 

factor) and CTAG (fifth factor).  

 

The TTL tool has other advanced features that make it 

desirable for machine translation. Sometimes it is better for 

certain phrases to be considered as a single entity. For 



example, phrases like “… do something to the other, …” are 

automatically linked together by an underscore and annotated 

as: “the_other|the_other^Pd|the_other^DMS|Pd3-s|DMS”. 

Other examples of automatically extracted phrases: 

“in_terms_of”, “the_same”, “a_little”, “a_number_of”, 

|”out_of”, “so_as”, “amount_of_money”, “put_down”, 

“dining_room”, etc. The same tokenization, phrase extraction 

and annotation process is performed for the Romanian 

language.  

 

The third and last step of the preprocessing phase is true-

casing all available resources. True-casing simply means 

lower-casing the first word in every sentence, where 

necessary. A model is trained on available data, learning what 

words should not be lower-cased, as acronyms or proper 

nouns, and applied back to the data. True-casing benefits 

automatic machine translation when building both the 

translation model and the language model by reducing the 

number of surface forms for each possible word.  

 

2. System description 

In this section we present the steps and the experiments 

performed to create and adapt our MT system to the TED task. 

We start with a basic phrase-based statistical MT system with 

default parameters in order to establish a baseline (section 

2.1); we then experiment with different adaptations of the 

language models and the translation tables used (2.2 – 2.4); we 

perform a parameter setting search to find the combination of 

parameters that will maximize the translation score (2.5); 

finally, we apply a technique we call “cascaded translation” 

[21] to attempt to correct some of the translation errors 

(section 2.6). 

 

Before describing the steps and experiments performed, we 

must specify that unless explicitly otherwise stated, the 

following BLEU scores are all obtained on comparing the 

English translation of the tst2012 file from the test set to an 

English reference file we manually created starting from the 

English subtitles for each respective TED talk. We later 

obtained access to the English tst2011 file from the same test 

set, but we did not have enough time to re-run the experiments 

on this official reference file. We are confident that our 

tst2012 reference file is very similar to the official file given 

the correlated scores of our results and those given by the 

official evaluation as we later present. 

2.1. Baseline system 

We start with the standard Moses [12] system. We trained the 

system on the in-domain data (the provided TED RO-EN 

parallel corpus), as well as building a language model on the 

English side of the same corpus.  

 

The language model was built using the SRILM toolkit [17]: 

surface-form, 5-gram, interpolated, using Knesser-Ney’s 

smoothing.  

 

This baseline system yielded a 25.34 BLEU score.  

2.2. Direct Language-Model adaptation experiment  

The first attempted language model adaptation method is the 

direct, perplexity-based measure: given the tokenized and 

true-cased English resources, extract sentences with the 

lowest perplexity and add them to the in-domain language 

model.  

 

The procedure first requires that all the English resources 

(both from the parallel corpora and the monolingual corpora) 

be merged into a single file. The resulting 27 GB file had 

around 28 billion tokens contained in almost 168 million 

sentences. Each sentence was perplexity measured against the 

in-domain language model. Then, the file was sorted based on 

sentence perplexity, lowest first.  

 

Starting with the initial in-domain language model that 

obtained 25.34 BLEU points we added incrementally batches 

of 1 million sentences, re-translated and noted the score 

increase/decrease. We observed a non-linear increase up to 10 

million added sentences, followed by a rather slow BLEU 

decrease. We found that the best performing language model 

constructing using this method contains 10.6 million 

sentences, 142,000 coming from English side of the in-

domain corpus. The score obtained using this method was 

28.04, a significant 2.70 point increase from the baseline 

score of 25.34.  

2.3. Indirect Language-Model adaptation experiment 

The direct language model adaptation works very well when a 

specific domain is given and a language model can be built on 

that domain to provide a perplexity reference for new 

sentences. If this information is not available, one could try to 

alleviate the problem in various ways. 

 

Our idea in this indirect language model adaptation is to 

check whether we could use the information available in the 

test set to create a better language model.  

 

This, however, presented a problem: while in the test set we 

are only given the source Romanian sentences that need to be 

translated, the English language model should be adapted 

with sentences for which translations are not yet available. 

Thus, we came up with the following four step procedure to 

attempt indirect adaptation of the target language model by 

generating English n-grams from Romanian n-grams: 

 

Step 1: Count the n-grams from the Romanian sentences in 

the test set. Counting was done up to 5-grams, ignoring 

functional unigrams (determiners, prepositions, conjunctions, 

etc.). 

 

Step 2: Having the translation table already created from the 

base model, attempt to “translate” the n-grams from 

Romanian to English. Parse the translation table, look up each 

Romanian n-gram and retain all the equivalents in English. 

This will increase the number of n-grams several times. At the 

end of this step we will have a list of English n-grams. 

 

Step 3: Based on the list of English n-grams, iterate over each 

sentence in the file containing all the English data (27 GB) 

and count matching n-grams. In order to select the most 

promising sentences, we have created a few different scoring 



methods: (1) Standard measure, where if we find a matching 

n-gram we increase the score of that sentence by n (e.g. if we 

find four unigrams and two trigrams we increase the score by 

4*1+2*3 = 10); (2) Standard normalized (Std. Div.) measure, 

where we divide the standard measure by the length of the 

sentence in order to compensate for very long sentences likely 

to have more n-gram matches; (3) Square measure, where if 

we find a matching n-gram we increase the score of the 

sentence by the square of n (ex: for 4 unigrams and two 

trigram the score would be 4*12+2*32=22); (4) Square 

normalized (Square Div.) measure, dividing the Square 

measure by the length of the sentence in order to compensate 

for long sentences. We thus sort in decreasing order each of 

the English sentences based on our proposed measures, 

obtaining 4 large English files. 

 

Step 4: From each of the four sorted files, we take incremental 

batches of sentences and build adapted language models of 

larger and larger sizes. 

 

 
 

Figure 1: Indirect LM adaptation BLEU scores 

 

Figure 1 presents our experimental results. We manage to 

obtain just a very slight increase over the baseline of 25.34 

when adding just a small number (less than 200,000 sentences 

in addition to the TED English sentences). This experiment 

shows that it is possible to adapt a language model starting 

only from the sentences that need to be translated, but also 

reveals that there is a fine-grained point over which adding 

more sentences, using our measures, actually degrades 

performance. Also, it should be noted that for both direct 

adaptation using the perplexity measure and the indirect 

adaptation method, the peak of the graph can be determined 

only if the target (reference) development set, on which to 

measure the BLEU score, is available. However, our indirect 

LM adaptation allows increasing the size of the available 

development set considering the monolingual test set.  

2.4. Translation model adaptation experiment 

With the next experiment we attempt to adapt the translation 

model (TM) using data available from the out-of-domain 

corpora.  

 

Based on the previous experiments we used perplexity as the 

similarity measure of choice. We attempted two adaptations 

based on both the source and the target languages. We built 

two language models: the first was built on the English side of 

the TED corpus while the second on the Romanian side. 

Using each language model in turn, we calculated the 

perplexity of each corresponding sentence from every 

translation unit in the out-of-domain parallel corpora. Then 

we sorted the corpora’s translation units according to the 

perplexity scores of English and Romanian parts. For 

example, we measured the perplexity of the Romanian side of 

Europarl & SETimes corpora vs. the language model built on 

the Romanian side of TED, and then sorted Europarl & 

SETimes by the ascending perplexity of their Romanian sides 

(similarly for English).  

 

We made experiments on TM adaptation selecting parallel 

data according to the similarity with each language model. 

We took increments of 5% of the sorted parallel corpora and 

added them to the TED corpus and noted the translation 

scores. For this experiment we used the development set 

(tst2010) which had a translation baseline score of 28.82.  

 

 
 

 
 

Figure 2: English and Romanian TM adaptation graphs 

 

The experiments show that even adding 5% of the best 

sentences (based on perplexity) of the Europarl and SETimes 

corpora decreases the translation score by a significant 0.3 

BLEU points. The decrease is rather consistent when trying to 

adapt the translation model starting from either the Romanian 

or the English language, clearly stating the conclusion that 

neither Europarl which is a juridical corpus nor SETimes 

which is news-oriented do contain parallel sentences that 

positively contribute to the translation model firmly located in 

a free-speech domain. After this result it was clear that further 

attempting to adapt the translation model using the provided 

out-of-domain corpora was impractical. Using the LEXACC 

comparable data extraction tool [18] with the TED and 

Europarl+Setimes corpora as search space supported the 



previous observation that the out-of-domain data was too 

distant from the in-domain-data to be useful in TM 

adaptation. 

2.5. Finding the best translation system  

Having experimented with adapting both the language model 

and the translation model, we started searching for the 

parameter combination that will maximize the translation 

score.  

 

The systematic search included the following parameters: 

- Translation type  

- Alignment model 

- Reordering model 

- Decoding type and sub-parameters 

 

The translation type refers to which word factors were used 

and the translation path itself. We started from the simple 

surface-to-surface translation, gradually using more factors 

such as part-of-speech (both MSDs and CTAGs, available 

after using the TTL tool in the corpus preprocessing phase), 

lemma or different combinations of lemmas and part-of-speech 

tags. The translation path meant using direct, single-step 

translation (ex: translation of surface-surface, translation of 

surface and part-of-speech to surface, etc.) or multiple step 

translation including generation phases (ex: translation of 

lemma to lemma then generation of part-of-speech from 

lemma, then translation of part-of-speech to part-of-speech 

and finally generation of the surface form from lemma and 

part-of-speech).  

 

For the alignment and reordering models we also tried using 

several combinations of word factors.  

 

Finally, for the decoder, we systematically modified the 

decoding parameters for the default decoder (beam size, stack 

size) and the decoding model (cube-pruning, minimum-bayes-

risk and lattice-minimum-bayes-risk, each with its individual 

parameters). 

 

After conducting an extended search of about 60 experiments 

in which parameters were systematically modified we obtained 

a score of 29.24, again a significant increase from the baseline 

system with the adapted language model for which we 

obtained only 28.04. These two figures are unofficial results 

computed (as mentioned in Section 2) on our hand made 

reference for tst2012. The best combination of parameters 

was: a single-step direct translation of surface form to surface 

form; an alignment model using the “union” heuristic; a 

reordering model using the default “wbe-msd-bidirectional-fe” 

heuristic; the alignment and reordering model based only on 

the lemma and the reduced MSD, not on the surface forms; a 

lattice-minimum-bayes-risk decoder with an increased stack 

size of 1000. 

 

The search was performed using the adapted language model 

described in section 2.2 and a translation model based only on 

the TED in-domain corpus.  

2.6. Cascaded system translation experiment 

Having obtained the optimum parameters so far, we applied a 

procedure we previously developed [21] to try to further 

improve the translation score without adding or using any 

external data. We hypothesize that training a second phrase-

based statistical MT system on the data that was output by our 

initial system, this second system will correct some of the 

errors the initial system made. 

 

The first step in building the second system of the cascade is 

based on using the first system to translate the Romanian side 

of its own RO-EN training corpus. This will yield a 

translated–EN-EN parallel corpus on which the second system 

is trained upon. The cascaded system is now ready to be used. 

 

 

 

 

 

Figure 3: Cascaded system diagram 

 

The diagram shows how the cascading procedure works. The 

test set is initially translated from Romanian into intermediary 

English. Next, this intermediary translation is fed to the 

second system which translates the intermediary English to 

“final” English. The “final” English is then evaluated against 

the reference to determine the effect of the cascade: how much 

improvement was achieved, if any. 

 

We obtained a net increase of 0.36 points bringing the new 

BLEU score to 29.60 (using our tst2012 manually created 

reference file). In this particular case the cascade changed 22 

percent of the total of 1733 sentences, 12% for the better and 

10% for the worse, the rest of the sentences being unaffected.  

  Table 1: Cascading effect 

S1 After system 1 S2 After system 2 Reference 

0.57 

the 

microprocessor . 

it 's a miracle 

the personal 

computer is a 

miracle . 

1.00 

the 

microprocessor 

is a miracle . 

the personal 

computer is a 

miracle . 

the 

microprocessor is 

a miracle . the 

personal 

computer is a 

miracle . 

0.53 

and the reasons 

delincvenților 

online are very 

easy to 

understand . 

0.7 

and the reasons 

online 

criminals are 

very easy to 

understand . 

and the motives 

of online 

criminals are very 

easy to 

understand . 

0.47 

and so let me 

begin with an 

example . 

0.31 

and let me try 

to begin with an 

example . 

and let me begin 

with one example 

. 

 

Table 1 shows some of the effects of cascading. In the first 

example we see a clear improvement from 0.57 to 1.00 of the 

translation by correctly placing the comma and transforming 

“it’s a” in “is a”. The second example shows that sometimes 

the cascade can correct initially non-translated words: due to 

Moses’s phrase table pruning mechanism, even though the 

unigram “delincvenților” is present in the training corpus, it 

does not appear in the first system’s phrase table and thus does 

not get translated. However, it appears in the second phrase 

table and is subsequently translated. The third example 

presents a score decrease from 0.47 to 0.31. However, 

transforming “so let me” to “let me try to”, while from 

InputRO
 

                    TransS1(InputRO)                 TransS2(TransS1(InputRO)) 

First 
system  

Second 
System 

Romanian                  intermediary English                             English 



BLEU’s perspective vs. the reference translation is a decrease, 

from a human perspective, the sentence is still fully 

comprehensible.  

 

Overall, cascading increases the BLEU score usually from a 

fraction of a BLEU point up to a few BLEU points [21]. For 

the official evaluation we have submitted for each test file a 

cascaded system and a non-cascaded system. The official 

evaluations showed a small increase of 0.04 BLEU (from 

29.92 for the standard, un-cascaded system to 29.96 for the 

cascaded) for the 2011 test file and an increase of 0.21 BLEU 

(from 26.81 to 27.02) for the 2012 test file, as presented in 

Table 2 in Section 4. 

3. Alternative translation systems 

After performing a host of experiments with Moses with 

different settings as reported in the previous sections, it 

became clear that the BLEU barrier of around 30% is not 

going to be easily (and significantly) broken without 

additional in-domain, parallel data and because of that, we 

proceeded to refine our own, in-house developed decoders 

based on Moses-trained phrase tables and language models. 

The purpose of this endeavor was to come up with a 

combination/merging scheme of the outputs of several 

decoders that, we envisaged, would ensure a superior 

translation when compared to each of the decoders. In what 

follows, we briefly give the underlying principles of our in-

house developed decoders and present their combined output 

with the best Moses output (see 2.6). 

3.1. The first RACAI decoder (RACAI1) 

The first RACAI decoder is based on the Dictionary Lookup 

or Probability Smoothing (DLOPS) algorithm [4], primarily 

used for phonetic transcription of out-of-vocabulary (OOV) 

words. The original algorithm works by adjoining adjacent 

overlapping sequences of letters that have corresponding 

transcription equivalents inside a lookup table. The 

overlapping sequences are selected by finding a single split 

position (called pivot) inside a sequence that will maximize a 

function called the fusion score (described in the original 

article). The algorithm would recursively produce the phonetic 

transcriptions of the pivot left and right sequences either by 

directly returning transcription candidates from the lookup 

table (if there are any transcription candidates) or by further 

recursive building the transcriptions. Because of the 

similarities that arise between the phonetic transcription and 

MT [13], we thought of adapting DLOPS to perform decoding 

for MT. There were some limitations of the initial algorithm 

that needed to be eliminated: 

1. We modified the system to use a Berkeley Data Base 

(BDB) for lookup to be able to cope with large 

phrase tables; 

2. The algorithm looks for the sequence of words with 

the highest translation score. The indexes of the left-

most and right-most words are considered the pivots 

of the recursions. The DLOPS had to be modified to 

search for two pivots instead of one;  

3. We added word reordering capabilities (this was not 

an issue in phonetic transcription). 

For each sequence of words that has a corresponding entry in 

the translation table, we retain all possible candidates and, 

returning from the recursive call, we get the Cartesian product 

of the translations from the left, center and right source word 

sequences. Because this translation set usually has a large 

number of candidates, we score each translation candidate by 

summing the S value for the left, center and the right sub-

candidate: 

 

)()|()|()|()|( 54321 eLMfeeffeefS    

 

where )|( ef is the Moses-based phrase table inverse phrase 

translation probability, )|( fe  is the direct phrase translation 

probability, )|( ef is the inverse lexical similarity score, 

)|( fe  is the direct lexical similarity score and )(eLM is the 

language model score (at word level) of the translation 

candidate. The weights 
5,...,1  are computed with the 

Minimum Error Rate Training (MERT) procedure from the Z-

MERT package [23]. 

3.2. The second RACAI decoder (RACAI2) 

This first step of this decoder is to collect a set C of source 

sentence non-overlapping segmentations according to the 

phrase table, giving priority to segmentations formed with the 

longer spans of adjacent tokens from the input sentence. For 

the input sentence S with n tokens, considering at most k 

adjacent tokens (called “a token span”) for which we find at 

least one translation in the phrase table, k < n, the total 

number N of non-overlapping segmentations is 
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For k = 2 this is the well-known Fibonacci series and it is 

obvious that )()( 2 nNnNk  for k > 2. It can be shown that 
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for some positive constant c and this tells us that one cannot 

simply enumerate all the segmentations of the source sentence 

according to the phrase table because the space is 

exponentially large. Thus, our strategy is to choose a 

segmentation  njiwP j

i  1| , where j

iw  is the 

token span from the index i to index j in the source sentence S 

which has at least one translation in the phrase table, such that 

P  is minimum. 

The second step of the decoder is to choose, for each partial 

translation jh1
(up to the current position j in S) and input 

token span Pwk
j 1

, the best translation k

jh 1
from the phrase 

table such that two criteria are simultaneous optimized: 

1. The translation scores of 
k

jh 1
 from the Moses 

phrase table are maximum; 

2. The language model (at word form level and POS 

tag level) score of joining jh1
with

k

jh 1
is also 

maximum. 

What we did, was to actually compute an interpolated score as 

in the case of the previously described decoder with weights 

tuned with Z-MERT. 

 



The third and final step of the RACAI2 decoder was to 

correct the raw, statistical translation output to eliminate the 

translation errors that were observed to be frequent and that 

violate the English syntactic requirements (mainly due to the 

inexistence of a reordering mechanism). This is a rule-based 

module that works only for English. Examples of frequent 

mistakes include: 

 translating the valid sequence “noun, adjective” 

from Romanian into the same, invalid, sequence in 

English; 

 translating the valid sequence “noun, demonstrative 

determiner” from Romanian into the same, invalid, 

sequence in English; 

 translating the valid sequence “noun, possessive 

determiner” from Romanian into the same, invalid, 

sequence in English. 

 

The astute reader has noticed that the optimization criteria 

from the second step of this decoder consider local maxima. 

One immediate improvement is to replace the current 

optimization step by a Viterbi global optimization [22]. 

3.3. Combining translations from Moses, RACAI1 and 

RACAI2 

Having three decoders that produce different translations for 

the same text, it is tempting to consider their combination in 

order to find a better translation. Generating the best 

translation for a text (sentence or paragraph), given multiple 

translation candidates obtained by different translation 

systems, is an established task in itself. Even the simplest 

approach of deciding which candidate is the most probable 

translation has been proven to be difficult [1, 5, 16]. The 

different solutions described in the literature are focused on re-

ranking merged N-best lists of translation candidates, word-

level and phrase-level combination methods [2, 6, 8, 14]. 

  

Our approach is a phrase-level combination method and 

exploits the linearity of the candidate translations given by the 

systems we employed. First, we split the source (i.e. 

Romanian) sentence into smaller fragments which are 

considered to be stand-alone expressions that can be translated 

without additional information from the surrounding context. 

For considerations regarding speed, this is done by using 

certain punctuation marks and a list of words (split-markers) 

that can be considered as fragment boundaries (e.g. certain 

conjunctions, prepositions, etc.). Every fragment must contain 

at least two words, out of which one should not be in the 

above mentioned list of split-markers. For example, the 

sentence “s-a făcut de curând un studiu printre directorii 

executivi în care au fost urmăriți timp de o săptămână.”1 is 

split into 3 fragments: “s-a făcut de curând un studiu”, 

“printre directorii executivi” and “în care au fost urmăriți 

timp de o săptămână.” 

 

                                                           
1
 English: “there was also a study done recently with CEOs in 

which they followed CEOs around for a whole week.” 

 

Figure 4: DTW Alignment helps identifying the 

corresponding translations of the source fragments  

In the next step, taking into account the linearity of the 

translations, we use Dynamic Time Warping (DTW) 

algorithm [3,15] to align the source sentence with the current 

translation candidate. The cost function is defined between a 

source word ws and a target word wt as: c = 1 – te(ws, wt), 

where te is the translation equivalence score in the existing 

dictionary. Taking into account the source fragments and the 

alignments obtained with DTW, we are able to pinpoint the 

translation for each of fragment. For our example we have the 

following candidates: 

Table 2: Translation candidates for the source fragments 

Translation/ 

system 

s-a făcut de 

curând un studiu 

printre 

directorii 

executivi 

în care au fost 

urmăriți timp de o 

săptămână. 

Moses 
it has recently 

made a study 

among the 

CEOs 

in which they were 

followed for about 

a week. 

RACAI 1 
it was done 

recently a study 

among 

CEOs 

in which they were 

tracked for about a 

week. 

RACAI 2 
was done recently 

a study 

among 

execs 

executives 

in which have 

been tracked for 

about a week. 

 

We modeled the selection process by a HMM. The emission 

probabilities are given by a translation model learned with 

Moses, while the transition probabilities are given by a 

language model learned using SRILM. The combiner uses the 

Viterbi algorithm [22] to select the best combination of the 

translation candidates and generate a “better” translation. For 

our example, the best path found by the Viterbi algorithm 

passes through the bolded fragments in the above table, 

yielding the final translation: “it was done recently a study 

among the CEOs in which have been tracked for about a 

week.”. Yet, this translation is deficient because of the missing 



pronoun “they” (existing in Moses and RACAI1 outputs) in 

the translation for the third fragment. 

 

We have also experimented with combination at the whole-

translation (sentence) level (as opposed to phrase-level) and 

we tried the following: 

1. selecting the translation which had the lowest 

perplexity as measured by the language model of the 

best Moses setting; 

2. selecting the translation which had the largest 

averaged BLUE score when compared to the other 

two translations; 

3. selecting the translation which had the lowest TERp 

score when compared to its cascaded version. 

 

The phrase-level combination method outperforms the first 

sentence-level combination method and it is close (somewhat 

better) to the other two sentence-level combination methods. 

We also estimated the maximum gain (an “oracle” selection) 

from the sentence-level combination by choosing the 

translation which had the highest BLUE against our reference 

for tst2012 (see Table 3). We have thus determined the 32.41 

BLUE score which is 2.81 points better than the cascaded 

Moses (29.60).  

 

Even if the phrase-level combination method does not 

outperform Moses, our analysis shows that the combiner 

improves about 22% of the Moses translations with an average 

increase of the BLEU score of 0.088 points per translation 

while it deteriorates about 27% of them with an average 

decrease of the BLEU score of 0.098 points per translation, 

amounting to a global decrease of only 0.69 BLEU points 

overall (see Table 3; compare S2 with S5). The rest of the 

translations remained unchanged after the combination. 

4. Conclusions 

The paper presented RACAI’s machine translation 

experiments for the IWSLT12 TED track, MT task, Romanian 

to English translation. In the first part we presented our 

experiments in building a system based on the Moses SMT 

package. We evaluated different adaptation types for the 

language and translation model; we then performed a 

systematic search to determine the best translation parameters 

(word factors used, alignment and reordering models, decoder 

type and parameters, etc.); finally, we applied our cascading 

model to correct some translation errors made by our best 

single-step translator. This experiment chain yielded our best 

model, in the official evaluation (Table 2) obtaining 29.96 

BLEU points for the tst2011 test set and 27.02 BLEU point 

for the tst2012.  

 

The second part of the paper presents our experiments in 

building two prototype decoders and a translation combiner. 

The decoders (RACAI 1&2) are based on different strategies 

than Moses (each presented in its own section), in our attempt 

to go beyond the difficult to reach baseline set by the best 

Moses-based model. However, even though we could not 

exceed yet this baseline, we came rather close to it, given that 

most of the development work was on adapting the Moses 

model and allowing only around 3 weeks for the development 

of the alternative decoders.  

 

The following tables show the official results [9] (case and 

punctuation included) for the entire test set (tst2011&2012), as 

well as the results obtained on the reference we built for 

tst2012 (the official reference was not released at the time of 

this writing). The tables contain the performance figures for 

our two Moses-based models (S1 being the best direct 

translation model we found, while S2 being the S1 model with 

our cascading technique applied), our two prototype decoders 

(S3 and S4) and our translation combiner (S5). 

 

Because we have not seen the reference for tst2012, our 

explanation for the differences among the figures in Table 2 

and Table 3 is that our evaluations were performed on lower-

case version of the data and mainly due to a different 

tokenization. While the official tokenization is based on space 

separation, our tokenization is language aware, considering 

(among others) multiword expressions and splitting clitics. 

  Table 2: Official systems evaluation results 

(case+punctuation) 

System 
tst2011 tst2012 

BLEU Meteor TER BLEU Meteor TER 

S1 

(Moses, not-

cascaded) 

29.92 0.6856 46.388 26.81 0.6443 50.891 

S2 

(Moses, 

cascaded) 

29.96 0.6844 46.701 27.02 0.6446 51.093 

S3 

RACAI1 
25.31 0.6484 48.845 22.56 0.6085 52.964 

S4 

RACAI2 
- - - 21.69 0.6009 56.950 

S5 

Moses + 

RACAI1 + 

RACAI2 

- - - 25.99 0.6378 51.580 

Table 3: Local systems evaluation results (language aware 

tokenization+no case+punctuation) 

System tst2012 

 BLEU 

S1 = Moses, not-cascaded 29.24 

S2 = Moses, cascaded 29.60 

S3 = RACAI1 24.50 

S4=RACAI2 23.89 

S5 = Moses + RACAI1 + RACAI2 28.91 

S6 = Oracle Moses + RACAI1 + RACAI2 32.41 
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