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Abstract
This paper describes the MIT-LL/AFRL statistical MT

system and the improvements that were developed during the
IWSLT 2012 evaluation campaign. As part of these efforts,
we experimented with a number of extensions to the standard
phrase-based model that improve performance on the Arabic
to English and English to French TED-talk translation task.
We also applied our existing ASR system to the TED-talk
lecture ASR task, and combined our ASR and MT systems
for the TED-talk SLT task.

We discuss the architecture of the MIT-LL/AFRL MT
system, improvements over our 2011 system, and experi-
ments we ran during the IWSLT-2012 evaluation. Specifi-
cally, we focus on 1) cross-domain translation using MAP
adaptation, 2) cross-entropy filtering of MT training data,
and 3) improved Arabic morphology for MT preprocessing.

1. Introduction
During the evaluation campaign for the 2012 International
Workshop on Spoken Language Translation (IWSLT-2012)
[1] our experimental efforts centered on 1) cross-domain
translation using MAP adaptation, 2) cross-entropy filtering
of machine translation (MT) training data, and 3) improved
Arabic morphology for MT preprocessing.

In this paper we describe improvements over our 2011
baseline systems and methods we used to combine outputs
from multiple systems. For a more in-depth description of
the 2011 baseline system, refer to [3].

The remainder of this paper is structured as follows.
Section 2 presents our work on the MT task, and section
3 presents our work on the automatic speech recognition
(ASR) and spoken language translation (SLT) tasks. In sec-
tion 2 we describe our baseline MT system, the improve-
ments made to that system over the course of this evaluation,
the experiments performed to test those improvements, and
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our evaluation results. In section 3 we describe our existing
ASR system that was applied to both the ASR and SLT tasks,
and present evaluation results for those tasks.

1.1. IWSLT-2012 Data Usage

We submitted systems for the ASR task, SLT task, and
English-to-French and Arabic-to-English MT tasks. In each
case, we used data supplied by the evaluation for each lan-
guage pair for training and optimization. For English-to-
French translation, several out-of-domain corpora were used
for language model training, phrase table training, and cross-
entropy filtering. For Arabic, our systems were strictly lim-
ited to the TED training supplied by the evaluation.

We employ a minimum error rate training (MERT) [20]
process to optimize model parameters with a held-out devel-
opment set (dev2010). The resulting models and optimiza-
tion parameters can then be applied to test data during the
decoding and rescoring phases of the translation process.

2. Machine Translation
2.1. Baseline MT System

Our baseline system implements a fairly standard SMT archi-
tecture allowing for training of a variety of word alignment
types and rescoring models. It has been applied successfully
to a number of different translation tasks in prior work, in-
cluding prior IWSLT evaluations. The training/decoding pro-
cedure for our system is outlined in Table 1. Details of the
training procedure are described in [13].

2.1.1. Phrase Table Training

When building our phrase table, we applied Kneser-Ney dis-
counting [6] to the forward and backward translation prob-
abilities of the phrases extracted during word alignment. In
the past, we have combined multiple word alignment strate-
gies, as described in [14]. For the experiments described
here, we used only IBM model 5 (see [17] and [18]) for word
alignment, to keep the statistics appropriate for discounting.



Training Process
1. Segment training corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [14] [15] [16]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences use base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge N-best lists (if input is ASR N-best)
4. Rerank N-best list entries

Table 1: Training/decoding structure

2.1.2. Language Model Training

During the training process we built n-gram language mod-
els (LMs) for use in decoding/rescoring, TrueCasing and
repunctuation. In all cases, the MIT Language Modeling
Toolkit [19] was used to create interpolated Kneser-Ney
LMs. Additional class-based language models were also
trained for rescoring. Some systems made use of 3- and 7-
gram language models for rescoring trained on the target side
of the parallel text.

2.1.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of
phrase translation models, language models, etc.

logP (E|F) ∝
∑
∀r

λrhr(E,F)

To optimize system performance we train scaling factors,
λr, for both decoding and rescoring features so as to mini-
mize an objective error criterion. This is done using a stan-
dard Powell-like grid search performed on a development
set [20].

A full list of the independent model parameters that we
used in our baseline system is shown in Table 2. All systems
generated N-best lists that are then rescored and reranked us-
ing either a maximum likelihood (ML) or an minimum Bayes
risk (MBR) criterion.

These model parameters are similar to those used by
other phrase-based systems. For IWSLT, we also add source-
target word translation pairs to the phrase table that would
not have been extracted by the standard phrase extraction
heuristic from IBM model 5 word alignments. These phrases
have an additional lexical backoff penalty that is optimized
during MERT.

The moses decoder [21] was used for our baseline sys-
tem.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (E) – 6-gram language model

Rescoring Features
P̂rescore(E) – 7-gram LM

P̂class(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

This system serves as the basis for a number of the con-
trastive systems submitted during this year’s evaluation. As
described in the following sections, we implemented several
techniques for generating improved phrase tables and lan-
guage models, and experimented with using these techniques
both individually and in combination.

2.2. English-To-French Domain Adaptation

During this evaluation we re-examined the approach to cross
domain adaptation that we presented in last year’s evalua-
tion [3]. Instead of training a single out-of-domain model
to adapt to the TED domain, we trained individual models
for each available parallel corpus and combined them using
hierarchical MAP adaptation [2]. In this technique, models
trained on corpora that are more distant from the test domain
are successively MAP-adapted with models estimated from
less distant corpora, using the following equation:

p̂i(s|t, λ) =
Ni(s, t)

Ni(s, t) + τi
pi(s|t, λi)

+
τi

Ni(s, t) + τi
ˆpi+1(s|t, λi+1) (1)

where Ni(s, t) is the count of the phrase pair (s, t) in
model i, pi(s|t, λi) is the probability of the source phrase
given the target phrase in model i, and ˆpi+1(s|t, λi+1) is the
MAP estimate from the previous step. The final probability
estimate for the given phrase pair is p̂1(s|t). The full hierar-
chy can be seen in Figure 1.

For the experiments presented here, the ordering of the
MAP hierarchy was determined based on the BLEU score
of each individual translation model on the held-out TED
development set, with low-scoring models adapted towards
higher-scoring ones.



p̂i(s|t,�) =
Ni(s, t)

Ni(s, t) + ⌧i
pi(s|t,�i) +

⌧i

Ni(s, t) + ⌧i
ˆpi+1(s|t,�i+1)

PT Trained on corpus i
(in-domain)

PT Trained on corpus i+1
(1st out-of-domain)

. . .

Ni+1(s, t)

Ni+1(s, t) + ⌧i+1
pi+1(s|t,�i+1) +

⌧i+1

Ni+1(s, t) + ⌧i+1
ˆpi+2(s|t,�i+2)

PT Trained on corpus M-1
(2nd to last out-of-domain)

NM�1(s, t)

NM�1(s, t) + ⌧M�1
pM�1(s|t,�M�1) +

⌧M�1

NM�1(s, t) + ⌧M�1
pM (s|t,�M )

PT Trained on corpus M
(last out-of-domain)

Figure 1: MAP with multiple corpora

2.3. English-To-French Cross-Entropy Filtering

As a comparison to domain adaptation, we experimented
with cross-entropy training data filtering, as in [38]. We
tested both language model- and translation model-based fil-
tering, but used only LM-based filtering for the experiments
performed here, as we found no significant improvement
from the inclusion of translation model scores.

We performed LM cross-entropy filtering separately on
the parallel portions of the Europarl, Giga-FrEn, News Com-
mentary, and UN corpora. For each of these corpora, for
both the source and target sides, we trained a language model
on a random subset of the sentences of the same size as the
TED training data. We then sorted all sentences in the corpus
based on the difference between their cross-entropy given
this model and their cross-entropy given the TED language
model. We trained new language models on the best 1/64,
1/32, 1/16, 1/8, 1/4, and 1/2 of the corpus. We selected the
filter size that produced the language model with the mini-
mum perplexity on the dev2010 dataset.

To filter the parallel data, we combined the perplexity
thresholds that produced the best source and target language
models for the dev2010 dataset. This resulted in the selec-
tion of 3.2 percent of the overall data for translation model
and language model training, as shown in Table 3.

Two translation models were trained using the filtered
parallel data. For the first, which we refer to as A3part, the
alignments were generated using all the filtered data but then
only the alignments from the TED portion were used to build
the translation model. For the second, called TMFilt, the
translation model was fully generated from all of the filtered
data.

2.4. Alternate French Language Models for Rescoring

Continuous space language model (CSLM) [37], and recur-
rent neural network language model (RNNLM) [36] were

Corpus Before Filtering After Filtering
TED 141,387 141,387
Giga-FrEn 24,116,560 824,698
UN 12,886,831 220,066
Europarl 2,007,723 76,554
News Commentary 137,097 1,735
TOTAL 39,289,598 1,264,441

Table 3: Cross-entropy filtering results in term of number of
sentence pairs

trained on the target side of the TED data. The continu-
ous space language model contained 256 hidden units and
an input context of 4 words. The recurrent neural network
contained 160 hidden units, 300 classes and backpropagation
through time of 4. These language models were used as addi-
tional rescoring models on the n-best list. A recurrent neural
network language model was also trained on the target side
of the bilingual cross-entropy filtered data (RNN-TMfilt).
Another language model used for rescoring was the max-
imum entropy language model(MELM). The 3-gram lan-
guage model was adapted from a background MELM trained
on gigaword and TED data. These models were trained with
an extension of the SRILM toolkit.

2.5. Arabic Morphological Processing

In our Arabic-to-English MT systems for prior year evalua-
tions [10, 9, 8, 7, 3], we normalized various forms of alef and
hamza and removed the tatweel character and some diacritics
before applying a light Arabic morphological analysis pro-
cedure that we called AP5. This year, we modified the AP5
procedure to more closely conform to the Arabic Treebank
(ATB) segmentation format used in the MADA Arabic mor-
phological analysis, diacritization, and lemmatization system



Arabic English

train

Sentences 90,542
Running words 1,235,359 1,477,768
Avg. Sent. length 13.64 16.32
Vocabulary 46,780 34,447

dev2010
Sentences 934
Running words 13,719 17,451
Avg. Sent. length 14.68 18.68

tst2010
Sentences 507
Running words 23,080 26,786
Avg. Sent. length 13.87 16.10

English French

train

Sentences 141,387
Running words 2,356,136 2,468,430
Avg. Sent. length 16.66 17.46
Vocabulary 41,466 53,997

dev2010
Sentences 934
Running words 17,451 17043
Avg. Sent. length 18.68 18.25

tst2010
Sentences 1664
Running words 26,786 27,802
Avg. Sent. length 16.10 16.71

Table 4: Corpus statistics for all language pairs

[4]. In [5], it was shown that the ATB format performed the
best of the various MADA segmentation formats tried on the
IWSLT 2011 evaluation. In particular, we kept the definite
article (Al-) attached to its corresponding noun or adjective.
We denote this modified AP5 system as AP5ATBLite.

2.6. MT Experiments

With each of the enhancements presented in prior sections,
we ran a number of development experiments in preparation
for this year’s evaluation. This section describes the develop-
ment data that was used for each evaluation track, and results
comparing the aforementioned enhancements with our base-
line system.

2.6.1. Development Data

Tables 4 describes the development and training set configu-
rations used for each language pair in this year’s evaluation.
We used the WMT-supplied segmenters for preprocessing
and normalization, as well as in-house tokenizers for Arabic
and French.

2.6.2. English-to-French MT Experiments

We ran a number of baseline and experimental systems on
the talk task data set using the methods described in prior
sections. In order to perform development experiments, we
used supplied development data (dev2010) for optimiza-
tion, and we held out tst2010 for development testing. Ta-

ble 5 summarizes the results on the held-out tst2010 set.
For these experiments, the reported scores are an average of
ten optimization/decoding runs with different random weight
initializations. In all cases we use at at least a 6-gram LM for
decoding and rescore with a 7-gram class LM and model1.

Table 5 contains results of our experiments with training
data filtering, and with the use of additional language models
for rescoring. The three sections of this table show results
obtained with three different phrase tables. The first of these,
the baseline phrase table, was generated using only the sup-
plied TED training data. The next phrase table, A3Part, was
generated using the cross-entropy filtering method described
in Section 2.3. Specifically, the word alignments were gen-
erated using all of the filtered data, but the phrases were ex-
tracted only from the TED data. This phrase table gives an
improvement of more than one BLEU point over the base-
line. The last phrase table, referred to as TMFilt, was again
generated from the filtered data, this time using all of the data
for both word alignment and phrase extraction. This phrase
table gives an additional improvement of more than half a
BLEU point over the A3part phrase table.

Within each section of Table 5, the experiments differ
based on their language model configurations. The baseline
TED language model was used in all cases. For all except the
first line in each section, a language model trained from the
monolingual Gigaword data was also used. This language
model is a 6-gram language model interpolated by year over
the afp portion of the French Gigaword corpus. It adds more
than half a BLEU point, regardless of the phrase table it is
used with. We also show results using additional language
models (CSLM, RNN, MELM) for rescoring. These lan-
guage models provided little or no additional gain in perfor-
mance, and in one case reduced the overall gain.

System tst2010

TED Models Only (baseline) 32.06
TED PT + InterpGiga LM 32.61
A3part 33.16
A3part + InterpGiga LM 33.80
A3part + InterpGiga LM + RNN 33.57
A3part + InterpGiga LM + MELM 33.79
A3part + InterpGiga LM + CSLM 33.91
A3part + InterpGiga LM + CSLM + RNN-TMfilt 33.83
TMFilt 33.71
TMFilt + InterpGiga LM 34.22
TMFilt + InterpGiga LM + RNN 34.26
TMFilt + InterpGiga LM + MELM 34.35
TMFilt + InterpGiga LM + CSLM 34.40
TMFilt + InterpGiga LM + CSLM + RNN-TMfilt 34.24

Table 5: Summary of English-French filtering experiment re-
sults

Table 6 contains results from our domain adaptation ex-
periments. The MAP phrase table was produced through



hierarchical MAP adaptation of phrase tables trained with
the following parallel corpora (in order): News Commentary,
Europarl, Giga-FrEn, and TED. On its own, this phrase table
improves the baseline score by about half a BLEU point. We
combined our phrase table domain adaptation with language
models that were trained individually on each parallel corpus
and included in the log-linear model. Using these language
models adds an additional half BLEU point to our scores.

System tst2010
TED Models Only (baseline) 32.06
TED PT + Parallel LMs 32.58
MAP 32.60
MAP + Parallel LMs 33.27

Table 6: Summary of English-French domain adaptation ex-
periment results

The overall best result was achieved with the TMFilt
phrase table, when combined with rescoring using a CSLM
language model. This score, 34.40, represents a gain of 2.34
BLEU points over the baseline score of 32.06. Unfortunately,
the TMFilt phrase table results were generated too late to be
included in the evaluation. At submission time, our best in-
dividual system used the same configuration, but with the
A3Part phrase table instead of the TMFilt phrase table, for
an average BLEU score of 33.91.

As described in section 2.7, we were able to combine our
domain adaptation system with one of our filtering systems
to produce a better result than any of the individual systems
available at submission time. In the future, we plan to ex-
periment with ways of combining the best techniques from
domain adaptation and filtering into a single system, rather
than relying on system combination.

2.6.3. Arabic-To-English MT Experiments

Table 7 shows the mean BLEU scores for individual Arabic-
to-English MT systems trained on the 2011 and 2012 training
data and tested on the tst2010 data versus the morphology
segmentation system. For both the 2011 and 2012 training
data, the AP5ATBLite system performs slightly better than
the AP5 system. Also, the extra training data in the 2012
system provides approximately one BLEU point of improve-
ment over the systems trained on the 2011 data.

Table 7: Mean BLEU scores for individual Arabic-to-English
MT systems tested on the tst2010 data versus morphology
segmentation system and year of training data.

Morphology Training Data
System 2011 2012

AP5 21.13 22.24
AP5ATBLite 21.57 22.45

In addition to the AP5ATBLite modification, we inves-

tigated the use of Kneser-Ney (KN) phrase table smoothing
[6] using the AP5ATBLite system trained on the 2012 train-
ing data. The combination of AP5ATBLite and KN smooth-
ing yielded a mean BLEU score of 23.60 compared to the
mean of 22.45 for the AP5ATBLite system without phrase
table smoothing.

2.7. MT Submission Summary

As part of this year’s evaluation we experimented with train-
ing data filtering, improved cross-domain adaptation, and im-
proved Arabic morphological processing. These develop-
ments have helped to improve our system when compared
with our 2011 system.

The overall submitted Arabic-to-English system was a
combination of individual component systems that were each
the best in terms of BLEU score after ten MERT optimiza-
tion runs. Two of the component systems were (1) the
best AP5ATBLite system (with no phrase table smoothing)
and (2) the best AP5ATBLite system with KN phrase table
smoothing.

The majority of our English-To-French submissions are
also combinations of multiple systems. Our primary submis-
sion is a combination of the MAP + Parallel LMs system and
the A3part + InterpGiga LM + MELM system. We also sub-
mitted the individual system that had the best single MERT
run, in terms of BLEU score on the tst2010 data set, which
was a run of the A3part + InterpGiga LM + CSLM + RNN-
TMfilt system.

Table 8 summarizes each of the systems submitted
for this year’s evaluation and how they compare with our
2011 submission (when applicable) on the tst2011 and
tst2012 data sets. Due to a de-tokenization error, our offi-
cial English-to-French submissions had much lower scores;
the scores reported here reflect the performance of our sys-
tem after the correction of that error.

3. Automatic Speech Recognition and Spoken
Language Translation

3.1. ASR System

Acoustic models were developed using the same TED data
and training procedure as our IWSLT 2011 system [3]. In ad-
dition to training models using Perceptual Linear Prediction
(PLP) features, we trained a second set of acoustic models
using Mel-Frequency Cepstral Coefficients (MFCCs).

Cross-entropy difference scoring [35] was used to select
subsets of the Europarl, Gigaword, news 2007–2011, and
news commentary texts for training the language models.
The provided TED training data was used for the in-domain
text, and the selection threshold for each out-of-domain data
set was chosen to minimize the perplexity on dev2010.
This process selected 7.3% of the data for LM development.

The SRILM Toolkit1 was used to estimate interpolated

1Available at: http://www.speech.sri.com/projects/srilm



Arabic-to-English Systems
System Features tst2011 tst2012

AE-primary 2011 2011 combined system 19.56 N/A
AE-primary 2012 primary combination 17.99 19.30
AE-contrast1 2012 contrast1 17.28 18.36

English-to-French Systems
System Features tst2011 tst2012

EF-primary 2011 2011 best system 34.19 N/A
EF-primary 2012 primary combination 36.10 37.32
EF-contrast1 2012 best individual system 36.16 36.75
EF-contrast2 2012 best combination 36.39 37.10

Table 8: Summary of submitted 2012 MT systems

trigram and 4-gram LMs for decoding and rescoring, re-
spectively. Recurrent Neural Network Maximum Entropy
(RNNME) LMs [36] were developed for rescoring using the
RNNLM Toolkit.2 One RNNME LM was trained on Giga-
word, and a second RNNME LM was trained on news 2007–
2011. As suggested in [39], the number of classes was set to
300 and 4-gram features were used for the ME model. Each
network included 160 hidden units, which was selected to
minimize the perplexity on the TED training data.3 The vo-
cabulary for the LMs included 95,000 words.

Recognition lattices were produced using the same pro-
cedure as last year [3], and 1000-best lists were extracted for
rescoring with the 4-gram and RNNME LMs. The scores
from each LM were linearly interpolated using weights cho-
sen to minimize the perplexity on the development partitions.
The final transcripts were produced by combining the MFCC
and PLP systems using a Confusion Network Combination
system (CNC).4

Our implementation of CNC starts by creating confusion
networks for each recognizer’s rescored N-best list. These
confusion networks are then aligned to each other using a
time-weighted Levenschtein distance computed over the max
posterior hypothesis per recognizer. The resulting alignment
is used to merge columns of each individual confusion net-
work into a single confusion network, where language model
and acoustic model scores for each recognizer’s hypotheses
are combined in a log-linear way, with weights for each sys-
tem and each individual model. System weights were set
through a Powell-like grid search using the supplied devel-
opment data.

Table 9 shows the Word Error Rates (WERs) obtained
on the IWSLT dev2010 and tst2010partitions. Accord-
ing to the unofficial results, the submitted system yielded a
12.6% WER on tst2011 and a 14.3% WER on tst2012.

2Available at: http://www.fit.vutbr.cz/∼imikolov/rnnlm
3Due to time constraints we only compared networks with 80, 120, and

160 hidden units.
4Due to a bug in the submitted system, the submitted combination did not

result in significant differences between the PLP baseline and the submitted
combination. This was due to an error in setting the prior weight per system.

dev2010 tst2010

MFCC PLP MFCC PLP
1st pass 19.0 18.3 18.7 17.9
2nd pass 16.6 16.5 15.4 15.0
4-gram 15.3 15.4 14.1 13.9
4-gram + RNNME 14.4 14.4 13.0 12.5
CN combination 13.7 12.9

Table 9: WERs obtained on the IWSLT dev2010 and
tst2010 partitions using the MFCC and PLP systems.

3.2. SLT System

For the SLT task, we used a combination of the ASR and MT
systems described above. We used only ASR input from our
own system.

3.3. SLT Submission

Table 10 summarizes the results of our submission for the
SLT tasks. Our official SLT evaluation scores were impacted
by the same de-tokenization error that lowered our English-
to-French MT scores. Again, these scores reflect the perfor-
mance of our system once that error was corrected.

System tst2011 tst2012
Primary 27.82 27.54
Contrastive 27.52 27.51

Table 10: Summary of submitted 2012 SLT systems

4. Acknowledgments
We would also like to thank Katherine Young and Jeremy
Gwinnup for their help in processing the English-French and
TED task data sets and the staff of the Human Language
Technology group at MIT Lincoln Lab for making machines
available for this evaluation effort.



5. References
[1] M. Federico, M. Cettolo, L. Bentivogli, M. Paul, S. Stüker
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