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Abstract 

In this paper, we study the incorporation of statistical machine 

translation models to automatic speech recognition models in 

the framework of computer-assisted translation. The system is 

given a source language text to be translated and it shows the 

source text to the human translator to translate it orally. The 

system captures the user speech which is the dictation of the 

target language sentence. Then, the human translator uses an 

interactive-predictive process to correct the system generated 

errors. We show the efficiency of this method by higher 

human productivity gain compared to the baseline systems: 

pure ASR system and integrated ASR and MT systems. 

1. Introduction 

Nowadays, with the expansion of global communications, the 

need for the translation has become a basic and important 

requirement, especially for international institutions and news 

agencies. Consider the following example to illustrate the 

importance of the translation in today world. In 2003, after the 

enlargement of the European Union, with a population of 453 

million, the cost of the translation at all institutions, once 

translators are operating at full speed, was estimated at 807 

M€ per year. 

Recently, significant improvements have been achieved in 

statistical machine translation (MT), but still even the best 

machine translation technology is far from replacing or even 

competing with human translators. In order to achieve high 

quality translations, translated texts by these systems need to 

be reviewed and corrected by a human translator. 

Another way to increase the productivity of the translation 

process is computer-assisted translation (CAT) system. In a 

CAT system, the human translator begins to type the 

translation of a given source text; by typing each character the 

MT system interactively offers the choices to enhance and 

complete the translation. Human translator may continue 

typing or accept the whole completion or part of it.  

Interactive machine translation (IMT), first appeared as part of 

Kay's MIND system [1], where the user’s role was to help 

with source-text disambiguation by answering questions about 

word sense, pronominal reference, prepositional-phrase 

attachment, etc. Later work on IMT, eg [2,3,4], has followed 

in this vein, concentrating on improving the question/answer 

process by having less questions, more friendly ones, etc. 

Despite progress in these endeavors, the question/answer 

process remained in the systems of this sort. Finally these 

systems are only used where the cost of manually producing a 

translation is high enough to justify the extra effort, for 

example when the user’s knowledge of the target language 

may be limited or non-existent, or when there are multiple 

target languages. With introducing TransType project by [5], a 

major change in how the user interacts with the machine had 

occurred. In such an environment, human translators interact 

with a translation system that acts as an assistance tool and 

dynamically provides a list of translations (suffixes) which 

complete the part of the source sentence already translated 

(prefix). Also from 1997 to 2004, most of the given papers 

related to the various versions of the TransType project such 

as [6,7,8,9]. 

Also one desired feature of a computer-assisted translation 

system is to provide an environment to accept the translator's 

target language speech signal to speed up the translation 

process; since professional translators can translate a given 

text faster by dictation rather than directly typing the 

translation [10]. In such a system, two sources of information 

are available to recognize the speech input; the target language 

speech and the given source language text. The target 

language speech is just a human-produced translation of the 

source language text. Machine translation models are used 

only to take into account the source text in order to increase 

the speech recognition accuracy. The overall schematic of 

automatic text dictation in computer-assisted translation is 

depicted in Figure 1. 

The idea of incorporating statistical machine translation and 

speech recognition models was independently initiated about 

one decade ago by two groups: researchers at the IBM Thomas 

J. Watson Research Center [10] and researchers involved in 

the TransTalk project [11] and [12].  
In [10], the authors described the statistical speech recognition 

models and statistical translation models. Then, they proposed 

a method for combining those models, but they did not report 

any recognition or translation results. Instead, they just 

reported the perplexity reduction when the translation models 

were combined to recognition models. 

In the TransTalk project [11] and [12], the authors reported 

three different combination methods between translation and 

recognition models. The first method was capable only of 

isolated word recognition. In the second method, the speech 

recognition system generates a list of the most probable word 

sequence hypotheses. Then the statistical translation models 

rescore them and select the best word sequence hypothesis. 

The idea behind the third method was the dynamic vocabulary 

for a speech recognition system which translation models 

generated for each source language sentence. The best 

recognition results have been achieved with the second 

method, while the third method was faster. The authors have 

shown the promising results of combining the translation 

models to speech recognition models. However, they neither 

described the details of the utilized translation model nor 

studied the impact of different translation models. Also 

recently, some researcher in [13,14,15,16,17] have studied the 

integration of ASR and MT models but in the any of these 

works haven’t been used from interactive framework. For the 

first time, in this paper, we enter interactive form into a speech 

enabled CAT and create a Speech-Enabled Interactive CAT. In 

this new system, the human translator uses an interactive-

predictive process to correct the system generated errors. 



 

 

 

 

 

 

 

 

Figure 1: Schematic of automatic text dictation in computer-

assisted translation 

2. Models of interactive-predictive speech-

enabled CAT 

In a speech-enabled interactive-predictive computer-assisted 

translation system, we are given a source language sentence 

� = �� …�� …�� , an acoustic signal � = 	� …	
 …	� that is 

the speech of the target language sentence, and the correct 

translated part of the target language sentence (prefix) 

� = �� …��. Then, we generate the best complement for the 

target sentence prefix (suffix) �� = ���� …�� . Among all 

possible target language sentence suffixes, we will choose the 

sentence with the highest probability: 

��� = argmax������� , �, �, �� 	                                         (1) 

					= argmax������, �� , �). �(�|�, �� , ��                      (2) 

					= argmax������� , ��. ���|�, ��). �(�|�, ���         (3) 

					= argmax�������|��. ���|�, ���. ���&�, ���         (4) 

Equation 2 is simplified into Equation 3 by assuming that 

there is no direct dependence between X and F. The 

decomposition into three knowledge sources in Equation 4 

allows an independent modelling of the target language 

model����|�� , the translation model ���|�, ���  and the 

acoustic model ���&�, ���. 

The target language model describes the well-formedness of 

the target language sentence. The translation model links the 

source language sentence to the target language sentence. The 

acoustic model links the acoustic signal to the target language 

sentence. The argmax operation denotes the search problem, 

i.e. the generation of the output sentences in the target 

language by maximization all possible target language 

sentences. Another approach for modelling the posterior 

probability�(��|�, �, �) is direct modelling by the use of a 

log-linear model. The direct posterior probability is given by: 

�(��|�, �, �) = '()[∑ ,-.-(��,�/,0,1)2-34 ]
∑ '()[∑ ,-.-(�6�,�/,0,1)2-34 ]76 �

              (5) 

This approach has been suggested by Papineni et al. in [18.19], 

for natural language understanding task; by Beyerlein in [20], 

for automatic speech recognition; and in [21] for statistical 

machine translation. The time-consuming renormalization in 

Equation 5 is not needed in the search. Therefore we obtain 

the following decision rule: 

��� = argmax�� ∑ 89ℎ9(��, �, �, �);
9<�                    (6)	

Each of the terms ℎ9(�� , �, �, �) denotes one of the various 

models which are involved in the recognition process. Each 

individual model is weighted by its model scaling factor89. 

As there is no direct dependence between � and � , the 

ℎ9(�� , �, �, �) can be in one of these two forms: 

ℎ9(�� , �, �) and ℎ9(�� , �, �). 

This approach is a generalization of Equation (6). The direct 

modeling has the advantage that additional models or feature 

functions can be easily integrated into the overall system. 

Based on Equation (4), the principal models which will 

contribute to the final system are the acoustic model, the 

language model, and the translation model(s). We may use one 

or more translation models in the final system. A set of 

possible translation models consists of HMM, IBM-1, IBM-2, 

IBM-3, IBM-4, IBM-5, and Alignment Template models, which 

will be described in Section 3. The details of utilized acoustic 

and language models will be explained in Section 4. 

The model scaling factors 8�
;  in Equation 5 are trained 

according to the maximum entropy principle, e.g. using the 

GIS algorithm. Alternatively, one can train them with respect 

to the final recognition quality measured by the word error rate 

[22]. The development of an efficient search algorithm for 

integrating automatic speech recognition and statistical 

machine translation models is very complicated. Thus, in order 

to facilitate the implementation of the above log-linear model, 

we use the principle of N-best rescoring instead of 

implementing a new search algorithm. The N-best rescoring 

approach helps us to quickly examine many different 

dependencies and models for the combination of automatic 

speech recognition and statistical machine translation. 

The recognition process is performed in two steps. In the first 

step, the baseline speech recognition system creates an N-best 

list of length N for every utterance X of the given corpus. In 

the second step, the translation models rescore every sentence 

pair (the entries in the N-best list with their corresponding 

source sentence). For each utterance, the decision about the 

best recognized sentence is made according to the recognition 

and the translation models. Then the implementation approach 

is very similar to the second method explained in [12]. 

3. Translation models 

A key issue in modeling the translation model probability 

���|�, ���  is the question of how we define the 

correspondence between the words of the target sentence and 

the words of the source sentence. In typical cases, we can 

assume a sort of pairwise dependence by considering all word 

pairs (�� , ��) for a given sentence pair (��� ; ��� ). A family of 

such alignment models (IBM-1,..., IBM-5) was developed in 

[23]. Using the similar principles as in Hidden Markov models 

(HMM) for speech recognition, we re-write the translation 

probability by introducing the hidden alignments> for each 

sentence pair	(���; ���): 

�?����&��
�� = ∑ �?����,>&��

��>                                     (7) 

IBM-1,2 and Hidden Markov Models. The first type of 

alignment models is virtually identical to HMMs and is based 

on a mapping@ → B = C�, which assigns a source position j to a 

target position B = C� . Using suitable modeling assumptions 

[22,23], we can decompose the probability	�?���� ,>&����with 

> = C�
�
: 

�?����, C�
�&��

�� =
D(E|F). ∏ HD�C�|C�I�, F, E�	. D J��K�LMNO

�
�<�                  (8) 

F: Source 

Language Text 

Recognition and 

Translation 

X: Target 

Language 

Speech 

E: Target 

Language Text 



With the length model D(E|F), the alignment model D(B|B′, F, E) 

and the lexicon model D(��|��). The alignment models IBM-1 

and IBM-2 are obtained in a similar way by allowing only 

zero-order dependencies. 

 

IBM-3, 4 and 5 Models. For the generation of the target 

sentence, it is more appropriate to use the concept of inverted 

alignments which perform a mapping from a target position i 

to a set of source positions j, i.e. we consider mappings Q of 

the form: 

Q: B → QS ⊂ {1,… , @, … , E}                                            (9) 

with the constraint that each source position j is covered 

exactly once. Using such an alignment > = QX
Y  we re-write 

the probability	�?���� ,>&����: 

�?����, QX
Y &��

�� =
D(E|F). ∏ ZD�QS|QX

SIX�. ∏ D(��|��)�∈QS \�
�<�                 (10) 

By making suitable assumptions, in particular first-order 

dependencies for the inverted alignment model D�QS|QX
SIX�, 

we arrive at what is more or less equivalent to the alignment 

models IBM-3, 4 and 5 [24]. 

 

Alignment Template Model. In all the above models, the 

single words are taken into account. In [25,26], the authors 

showed significant improvement in translation quality by 

modeling word groups rather than single words in both the 

alignment and lexicon models. This method is known as the 

alignment template (AT) approach. 

3.1. Training 

The unknown parameters of the alignment and lexicon models 

are estimated from a corpus of bilingual sentence pairs. The 

training criterion is the maximum likelihood criterion. As 

usual, the training algorithms can guarantee only local 

convergence. In order to mitigate the problems with poor local 

optima, we apply the following strategy [23]. The training 

procedure is started with a simple model for which the 

problem of local optima does not occur or is not critical. The 

parameters of the simple model are then used to initialize the 

training procedure of a more complex model, in such a way 

that a series of models with increasing complexity can be 

trained. To train the above models except for the alignment 

template model, we use the GIZA++ software [24]. The 

alignment template model training scheme, and also the 

description of our translation system which is based on the 

alignment template approach is explained in [26]. 

4. Speech recognition system  

The speech recognition system is trained on a large 

vocabulary, namely the European Parliament Plenary Sessions 

(EPPS) corpus. The corpus consists of: 67k training-sentences 

(87.5h) from 154 speakers. The other statistics of the speech 

recognition train corpus are shown in Table 1. 

4.1. Experimental results 

We rescore the ASR N-best lists with the standard HMM [27] 

and IBM [23] MT models. Then we use each the N-best list as 

N-best hypotheses in order to provide target suffixes for the 

CAT system.  

Table 1: Statistics of the speech recognition train 

corpus. 

 EPPS 

Language English 

Acoustic data [h] 87.5 

# Running words 705 K 

Vocabulary size 58 K 

# Segments 67 K 

# Speaker 154 

 

The size of the development and evaluation sets N-best lists is 

sufficiently large to achieve almost the best possible results. 

On average 1738 hypotheses per each source sentence are 

extracted from the ASR word graphs. The ASR and MT 

integration experiments are carried out on a large vocabulary 

task which is the Spanish–English parliamentary speech 

translation (EPPS). The corpus statistics is shown in Table 2. 

To determine the performance of the speech-enabled 

interactive-predictive CAT system, we simulate a human 

translator who uses this system. The simulated human knows 

the correct translation and selects all or part of a suggested 

suffix whenever this suffix matches fully or partially with the 

correct translation. If suggested suffix doesn't match with the 

reference translation, simulated human will more complete the 

prefix, character by character, until whole or part of a 

suggested suffix matches with the reference translation.  

See Figure 2 for the pseudo-code of the algorithm that 

simulates a human, matches prefix in the N-best lists and 

calculates the measure of user efforts. 

 

Table 2: Statistics of the Spanish-English (EPPS) 

corpus. 

 EPPS 

Spanish English 

T
ra

in
 

Sentences 1 167 627 

Running words 35.3 M 33.9 M 

Vocabulary size 159 080 110 636 

Singletons 63 045 46 121 

D
ev

 Sentences 1 750 

Running words 22 174 23 429 

OOVs 64 83 

T
es

t Sentences 792 

Running words 19 081 19 306 

OOVs 43 45 

4.2. Evaluation metrics 

In order to measure the performance of our CAT system, we 

need to determine quantity of effort the human translator for 

translating a sentence in the absence and presence of the CAT 

system. For this purpose, we use the summation of the 

keystroke ratio (KSR) and mouse-action ratio (MAR) which in 

follow are described.  

KSR (Key-stroke ratio): The KSR is the number of key-

strokes required to produce the single reference translation 

using the interactive machine translation system divided by the 

number of keystrokes needed to type the reference translation. 

Hence, the KSR is inversely related to the productivity 

increase which the system brings for the user.  



Input: N_best_lists, Ref_Sentences, KSR=0, MAR=0 

Output: KSMR 

1: main() 

2: { 

3:    for (i=0; i< N_best_lists.size(); i++) 

4:          Simulated_User (N_best_lists[i][0],i) 

5:    KSMR=(KSR+MAR)/total_character*100 

6: } 

 

7: Simulated_User (char* Trans_offer ,int Id) 

8: { 

9:     Prefix=Find_biggest_prefix(Trans_offer                  

                                                       , Ref_Sentences[Id]) 

10:    // Find_biggest_prefix compare two char* 

11:    // and return the biggest identical substring 

12:    if (Prefix== Ref_Sentences[Id]) 

13:    { 

14:       KSR=KSR+1 // for accepting offer 

15:        return ; 

16:    } 

17:    else 

18:    { 

19:       MAR=MAR+1 // for determining prefix by mouse 

20:       Prefix= Prefix +Ref_Sentences[Id][ Prefix.size()] 

21:       // the first non_match character is added to prefix. 

22:       KSR=KSR+1 // for insert a character 

23:       Simulated_User (Match_Prefix (Prefix,Id),Id) 

24:    } 

25: } 

 

26: char* Match_Prefix(char* Prefix, int Id) 

27: { 

28:    min=1000 

29:    index_min=-1 

30:    for (i=0; i< N_best_lists[Id].size(); i++) 

31:    { 

32:       dis=Minimum_Edit_Distance(N_best_lists[Id][i] 

                                                              , Prefix) 

33:    // Minimum_Edit_Distance is calculated by Levenshtein  Algorithm. 

34:         if (dis<min ) 

35:        { 

36:             min=dis 

37:             index_min=i 

38:        } 

39:    } 

40:    Suffix= N_best_lists[Id][ index_min] – Prefix 

41:    return Suffix 

42: } 

Figure 2: The pseudo-code of the algorithm which simulates a 

human and matches prefix in the N-best list. 

 

A KSR of 1 means that the interactive machine translation has 

never suggested an appropriate completion to the use sentence 

prefix, while a KSR value close to 0 means that the system has 

often suggested perfect completions. 

MAR (Mouse-action ratio): 

It is similar to KSR, but it measures the number of mouse 

pointer movements plus one more count per sentence (the user 

action needed to accept the final translation), divided by the 

total number of reference characters. 

KSMR (Key-stroke and mouse-action ratio): 

It is the summation of KSR and MAR, which is the amount of 

all required actions either by keyboard or by mouse to 

generate the reference translations using the interactive 

machine translation system divided by the total number of 

reference characters. 

4.3. Experiments 

In order to rescore the N-best list generated by the automatic 

speech recognizer, we make use of the translation models 

described in Section 3. The rescored N-best lists are used in 

the CAT system as N-best hypotheses lists. After human 

translator interact with the CAT and a prefix is formed, the 

CAT will search N-best hypotheses for founding a hypothesis 

which has minimum edit distance to the prefix and exactly 

includes the last (partial) word of the prefix. Then the CAT 

system returns remaining of target sentence to the user (from 

after last word to end of hypothesis). To study the effect of the 

N-best list size on the CAT results, we repeat the experiments 

with N-best lists which have a maximum of 1, 5, 10, 100, 1000 

and 5000 hypotheses per sentence for the EPPS task. The 

results of the speech-enabled interactive-predictive CAT 

system are listed in Table 3 and 4. 

 

Table 3: KSMR result for Test and Dev in percent. For 

each translation model, translation probability is 

calculated in one direction. 

 Test Dev 

ASR 

n=1 9.2330 12.4844 

n=5 7.8893 10.3986 

n=10 7.3995 9.7566 

n=100 6.3681 8.4446 

n=1000 5.7882 7.9736 

n=5000 5.6361 7.8683 

S
A

R
+

M
T

 

 

 

 

IBM1 

n=1 8.5129 11.751 

n=5 7.1701 9.7380 

n=10 6.7058 9.1292 

n=100 5.7490 7.9496 

n=1000 5.3794 7.5926 

n=5000 5.2884 7.5205 

 

 

 

HMM 

n=1 8.9872 12.247 

n=5 7.6180 10.152 

n=10 7.1501 9.5327 

n=100 6.0740 8.2896 

n=1000 5.5724 7.8164 

n=5000 5.4413 7.7057 

 

 

 

IBM3 

n=1 8.4091 11.651 

n=5 7.1583 9.6807 

n=10 6.7623 9.0812 

n=100 5.7781 7.9456 

n=1000 5.3858 7.5879 

n=5000 5.3139 7.4903 

 

 

 

IBM4 

n=1 8.1488 11.285 

n=5 6.9270 9.3283 

n=10 6.4764 8.7420 

n=100 5.5269 7.7808 

n=1000 5.2319 7.4292 

n=5000 5.1646 7.3556 

 

 

 

IBM5 

n=1 7.9867 11.152 

n=5 6.7522 9.2268 

n=10 6.3872 8.7063 

n=100 5.4313 7.6987 

n=1000 5.2082 7.3951 

n=5000 5.1254 7.3308 



Table 4: KSMR result for Test and Dev in percent. For 

each translation model, translation probability is 

calculated in two directions. 
 

 Test Dev 
S

A
R

+
M

T
 

 

IBM1 

& 

IBM1-I 

n=1 7.3686 9.8767 

n=5 6.4200 8.5220 

n=10 6.1487 8.0550 

n=100 5.4286 7.3339 

n=1000 5.1828 7.1325 

n=5000 5.1008 7.0582 

 

HMM 

& 

HMM-I 

n=1 7.9385 11.014 

n=5 6.7395 9.2593 

n=10 6.4436 8.6382 

n=100 5.5842 7.6971 

n=1000 5.2702 7.4253 

n=5000 5.2046 7.3564 

 

IBM3 

& 

IBM3-I 

n=1 8.3099 11.248 

n=5 7.1146 9.4592 

n=10 6.6922 8.8450 

n=100 5.7472 7.8304 

n=1000 5.3566 7.4965 

n=5000 5.2884 7.4090 

 

IBM4 

& 

IBM4-I 

n=1 6.6749 9.2780 

n=5 5.8646 8.0410 

n=10 5.6088 7.6445 

n=100 5.0471 7.0489 

n=1000 4.8832 6.8506 

n=5000 4.8450 6.8212 

 

IBM5 

& 

IBM5-I 

n=1 6.7504 9.3662 

n=5 5.8974 8.1115 

n=10 5.6443 7.7606 

n=100 5.0872 7.1194 

n=1000 4.8960 6.8955 

n=5000 4.8678 6.8793 

 

In spite of Table3 that shows the translation probability in one 

direction ( D(���|���) ). Additionally, in Table 4, for each 

translation model, we calculate the translation probability in 

both directions: D(���|���) andD(���|���). Both tables are shown 

the KSMR measure of the CAT. 

4.4. Discussion 

As the results show, there is a clear and significant accuracy 

improvement in all cases when moving from single-best to N-

best translations. The best results obtained on the test and 

development sets are 5.13 % and 7.33 %, respectively. Both of 

results are produced by the IBM translation Model 5 and the 

N-best lists with maximum size 5000 hypotheses. According 

to these results, user of our CAT would only need an effort 

equivalent to typing about 5.13% and 7.33% of the characters 

in order to produce the correct translations for the test and 

development sets, respectively. These results are very ideal for 

CAT systems.  

Also we could improve these results by using the translation 

models in both directions. These results are shown in Table 4. 

In this case, the best results obtained on the test and 

development sets are 4.87% and 6.88%, respectively. For 

better and easier comparing of the results, consider Figure 3 to 

Figure 6. 

 
Figure 3: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Test set. 

 
 

 

 
Figure 4: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Dev set. 

 

 

 

 
Figure 5: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Test set. 
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Figure 6: Results of the Interactive-predictive Speech-enabled 

CAT on the EPPS Dev set. 

 

The successes obtained in these experiments are due to the 

quality of translations produced by the integrated ASR and 

MT systems and size of the N-best lists. With larger n-best list, 

the probability that the CAT system can suggest a better 

extension will increase. 

5. Conclusion 

The goal of this paper was to evaluate whether the accuracy of 

a speech-enabled interactive-predictive CAT system could be 

improved by using the N-best lists which are obtained by ASR 

and are rescored by translation models.  

We introduced a general framework for integrating the speech 

recognition and translation models for automatic text dictation 

in the context of computer-assisted translation. We used the N-

best lists which were produced by integrated ASR and MT 

systems, as N-best hypotheses in the CAT system and we 

achieved significantly better results. 
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